Infiltration Basin

Mary Anne Lowndes DNR

Post-Construction Stormwater Management
Workshops
December 2004

Infiltration Basins

Infiltration Standard (by design)

- Residential
 - Infiltrate 90% of the average annual predevelopment infiltration volume or
 - 25% of the 2-year, 24-hour storm
- Non-residential
 - Infiltrate 60% of the average annual predevelopment infiltration volume or
 - 10% of the 2-year, 24-hour storm

- Maximum effective infiltration area required to meet volume requirement
 - Residential: 1% cap
 - Non-residential: 2% cap
- Pretreat parking lots & roads

Infiltration Standard Exclusions (Prohibitions)

- Certain industrial areas, contaminated soils & soil conditions
- Fueling & vehicle maintenance areas
- Within 3 or 5 feet to groundwater or bedrock
- Areas that lack proper soil texture (fines)
- Near karst features
- Near municipal or private wells

Infiltration Standard Exemptions (Not Required)

- Infiltration rate less than 0.6 inch/hour
- Highways & arterial roads
- Commercial, industrial & institutional roads
- Smaller parking lots & access roads
 - less than 5,000 feet²
- In-fill areas < 5 acres & redevelopment areas
- During frozen soil conditions

Infiltration

- Intent is to return portion of predevelopment infiltration volume
- Varies by residential or non-residential
- Not required where:
 - Groundwater contamination risk is too high
 - Land use carries a high pollutant load
 - Site is for redevelopment or < 5 acre in-fill
 - Infiltration is impractical

Infiltration Basin Definition

- Open Impoundment
- Greater than 15 feet wide at minimum
- Excavation or Embankment
- Flat, densely vegetated floor
- Dedicated to infiltration

Effective Infiltration Area

 Doesn't include berms, site access, pretreatment

Doesn't include ditches for conveyance

 Must be specifically designed to infiltrate

Benefits

- Reduces runoff volume and peaks
- Reduces pollutant loadings
- Reduces thermal impacts to stream
- Groundwater recharge
- Preserves base flow in streams

Pretreatment Requirement

- 60% reduction in TSS for Residential
- 80% reduction in TSS for commercial, industrial, institutional (and assoc. roads)

- Reason:
 - Long-term operation
 - Centralized device (failure is serious)

Getting Started

- Use Site Evaluation Technical Standard to select a location on the site.
- Use infiltration rates identified in standard for soils at the site.
- Calculate required infiltration volume.
 - Use Tech. Note or approved model
 - http://dnr.wi.gov/org/water/wm/nps/stormwater/techstds.htm#Post

Technical Note

Technical Note for Sizing Infiltration Basins and Bioretention Devices To Meet Stormwater Infiltration Performance Standards

Table of Contents

Part 1.	Introduction	Page 2
Part 2.	Determining the Target Stay-on Depth	Page 3
Part 3.	Determining the Effective Infiltration Area	
	Requirement for Infiltration Basins	Page 5
Part 4.	Determining the Effective Infiltration Area	
	Requirement for Bioretention Devices	Page 12
Part 5.	The RECARGA Model	Page 12

Table 1. Directory of digital files referenced in this technical note.

File Content	Applicability	File Name
Technical note text	Infiltration Basins,	Technical Note for Sizing
	Bioretention Devices	Infiltration Devices.doc
Target Stay-on Depth	Infiltration Basins, Bioretention Devices	Target stay-on requirements.xls
Silt loam soils, 3" pond depth	Infiltration Basins	Chart1madsiltloam3.xls
Loam soils, 6" pond depth	Infiltration Basins	Chart2madloam6.xls
Sand loam soils, 6" pond depth	Infiltration Basins	Chart3madsandyloam6.xls
Sand loam soils, 12" pond depth	Infiltration Basins	Chart4madsandyloam12.xls
Loamy sand soil, 6" pond depth	Infiltration Basins	Chart5madloamysand6.xls
Loamy sand soil, 12" pond depth	Infiltration Basins	Chart6madloamysand12.xls
Loamy sand soil, 18" pond depth	Infiltration Basins	Chart7madloamysand18.xls
Loamy sand soil, 24" pond depth	Infiltration Basins	Chart8madloamysand24.xls
Sand, 6" pond depth	Infiltration Basins	Chart9madsand6.xls
Sand, 12" pond depth	Infiltration Basins	Chart10madsand12.xls
Sand, 18" pond depth	Infiltration Basins	Chart11madsand18.xls
Sand, 24" pond depth	Infiltration Basins	Chart12madsand24.xls
RECARGA v. 2.3	Infiltration Basins,	RECARGA_2_3.exe
	Bioretention Devices	(In Recarga Folder)
RECARGA User's Manual v. 2.3	Infiltration Basins, Bioretention Devices	RECARGA2-3User_Manual.pdf

Effective Infiltration Area

Inputs:

- Design infiltration rate of soil
- Design ponding depth of basin
- % total imperviousness of drainage basin
- Curve number of pervious area in drainage basin
- Output is effective infiltration area to meet the performance standard.

Example

- 50 acres of cropland in loamy sand (Type A hydrologic group)
- Convert to 50 acres of medium density residential development (1/4 acre sites)
- From NR 151:
 - CN for cropland is 56

CHART 1 - TARGET STAY-ON (ANNUAL INFILTRATION) REQUIREMENT Based on the annual 1981 Rainfall for Madison, WI

CHART 1 - TARGET STAY-ON (ANNUAL INFILTRATION) REQUIREMENT Based on the annual 1981 Rainfall for Madison, WI

Table 3. Combinations of infiltration rates and ponding depths covered by Charts 1-12 listed in Table 1.

Soil Texture	Design Infiltration Rate (Kd), inches/hour	Basin Design Ponding Depth, inches
Silt Ioam	.13	3
Loam	.24	6
Sandy loam	.5	6
Sandy loam	.5	12
Loamy sand	1.63	6
Loamy sand	1.63	12
Loamy sand	1.63	18
Loamy sand	1.63	24
Sand	3.6	6
Sand	3.6	12
Sand	3.6	18
Sand	3.6	24

Example continued

- Target stay-on-depth = 26 inches
- Medium density residential:
 - 40% total imperviousness
 - Pervious area CN of 60
- Choose to maximize depth
 - Use nomograph (Chart 8) for loamy sand, infiltration rate of 1.63 in/hr, 24 inch depth

Chart 8: Infiltration Basin Design Curve Loamy Sand Soil: Kd=1.63 in/hr and 24-inch Ponding Depth 30 Cumulative Stay-on Depth (inches) $0N_0 = 60$ %Impervious $ON_0 = 80$ %Impervious 100% Impervious Rainfall 0 2 3 10

Infiltration Basin Area (% of Drainage Basin)

Rainfall File: Madison, WI

Dimensions

- Depth
 - Not to exceed 24 inches
 - maximum draw down within 24 hours (necessary to preserve vegetation)
 - Applies to all cells (need cells when flow path exceeds 300 ft.)
- Area
 - Calculate infiltration volume based on target stay-on-depth, infiltration rate

Dimensions continued

- Slope
 - Longitudinal slope not to exceed 1% (prefer a flat bottom)
 - Correction needed for longitudinal slope if present
 - Lateral slope shall be 0%
 - Side slopes (interior and exterior) at 4:1 or flatter

Example continued

- From Chart 8
 - Surface area equal to 0.75% of drainage area
- Calculate Dimension
 - 50 acre drainage area
 - Required area 0.375 acres = 16,500 sq. ft.
 - Volume at 2 ft depth = 33,000 cu. ft.
 - Assume 3:1 length to width ratio dimensions will be approximately 75ft. X 225 ft.

Example continued

- For a flat bottom basin
 - -2 ft. X 75 ft. X 225 ft. provides the required infiltration volume and no cell breaks needed (2 foot depth is maximum from standard)
- For a basin with a 1% longitudinal slope
 - Area needs to be twice above area to account for triangular area lost
 - Cannot exceed 2 ft. of depth
 - Now cells will be needed

Longitudinal Slope Adjustments

Cells and Level Spreaders

- Sheet flow maximizes area for infiltration
- Channelized flow may occur by 300 feet
- Divide area into cells
- Utilize level spreaders at inlets to basin and cells
- Each cell cannot exceed 24 inches in depth
 - Further depth restriction by soil type for 24 hour maximum draw down.

Table 3. Combinations of infiltration rates and ponding depths covered by Charts 1-12 listed in Table 1.

Soil Texture	Design Infiltration Rate (Kd), inches/hour	Basin Design Ponding Depth, inches
Silt loam	.13	3
Loam	.24	6
Sandy loam	.5	6
Sandy loam	.5	12
Loamy sand	1.63	6
Loamy sand	1.63	12
Loamy sand	1.63	18
Loamy sand	1.63	24
Sand	3.6	6
Sand	3.6	12
Sand	3.6	18
Sand	3.6	24

Final Area

- Calculate from table for soils and max. ponding depth. - preliminary effective infiltration area
- Increase effective infiltration area for longitudinal slope
- Add area for berms and cells

Outlets

- 1. Draw down device
- 2. Emergency spillway
 - Designed for 100 year 24 hour event
 - One foot of freeboard required
- 3. Peak flow control optional

Outlet Option

Draw-Down Device

- Maintenance feature
- Draw down needed for each cell
- Used to bypass during winter if salt is an issue

Construction Criteria

Compaction and Vegetation

Construction Phase

- A. No Disturbance
- B. Compaction Mitigation
 - Incorporate soil additives
 - Chisel plow or rotary device to 12 inches
 - Add acceptable compost
- Don't build during rain events because of smearing potential

After Construction

- Survey basin to verify elevations and grades
- Keep basin off-line until
 - 90% build-out is achieved (first 3 years)
 - -75% build-out (years 4 to 5)
 - 5 years from construction

Vegetative Cover

- Turf Grass
 - During establishment use a cover crop with permanent seeding
 - No sod
- Native Vegetation
 - Use recommendations of qualified nursery with experience in native vegetation
 - Seed in fall or spring or use plugs
- Use fertilizer and mulch appropriately

Considerations

- Multiple uses
 - Infiltration and peak flow shaving
 - Flow splitter
- Drainage area
 - 5-50 acres
 - Use multiple basins for > 50 acres
- Level spreaders
 - Difficult to achieve
 - Berm / stone trench or ridge and furrow

More Considerations

- Have the landscape contractor do final grading.
- Don't use infiltration basin for snow storage.
- Infiltration basins in internally drained watersheds may need to exceed depths, may need different kinds of plants, may need more frequent maintenance

Operation and Maintenance

- Inspect spreader, outlets and vegetation quarterly
- Native vegetation can be mowed or burned
 - Procedures provided in standard
- If standing water is observed over 50% of effective infiltration area three days after rainfall - IT'S CLOGGED

Restoration

- Drain basin
- Remove top 2-3 inches
- Chisel plow or deep till
- Add topsoil and compost
- If this fails to correct the problem and the basin is planted in turf grass replant with deeper rooted vegetation

Level Bottom

- Difficulty in maintaining a flat or level bottom
- Short-circuiting affects effective infiltration area
- Can lead to early failure or more frequent overflow.

Detention Pond Elevations at Hwy KP Surveyed 5/25/00 0.1' Contour Intervals

Short-circuiting

- Infiltration basin was constructed with a drainage pattern down the middle
- Previous slide mapped the problem
- Contract to redo basin floor to provide a flatter bottom
- After second attempt, basin still only uses portion of the available infiltration area
- Cells would be an option

Effective Infiltration Area Compromised

Winter Maintenance

- Use drawn down device to take infiltration basin off-line during winter conditions if:
 - Drainage basin uses chlorides for de-icing in significant amounts
- If basin is enclosed or diversion is not possible - limit use of chloride deicers in the drainage basin.

Visual Clues to TSS Concentration Variation

Blue = KP

Red = Bourbon

